Artificial intelligence-based imaging reconstruction may lead to incorrect diagnoses, experts caution

Artificial intelligence-based techniques, used to reconstruct medical images, may actually be leading to incorrect diagnoses.

That’s according to the results of a new investigation, led by experts at the University of Cambridge. Scientists there devised a series of tests to assess such imaging reconstruction and discovered numerous artefacts and other errors, according to their study, published May 11 in the Proceedings of the National Academy of Sciences.

This issue seemed to persist across different types of AI, they noted, and may not be easily remedied.

"There's been a lot of enthusiasm about AI in medical imaging, and it may well have the potential to revolutionize modern medicine; however, there are potential pitfalls that must not be ignored," co-author Anders Hansen, PhD,  from Cambridge's Department of Applied Mathematics and Theoretical Physics, said in a statement. "We've found that AI techniques are highly unstable in medical imaging, so that small changes in the input may result in big changes in the output."

To reach their conclusions, Hansen and coinvestigators—from Norway, Portugal, Canada and the United Kingdom—used several assessments to pinpoint flaws in AI algorithms. They targeted CT, MR and nuclear magnetic resonance imaging, and tested them based on instabilities tied to movement, small structural changes, and those related to the number of samples.

Even tiny movements, the team found, resulted in numerous artefacts in the final product, with blurred or missing details. Hansen et. al are concerned that radiologists may interpret these errors as medical issues, rather than dismissing them.

"When it comes to critical decisions around human health, we can't afford to have algorithms making mistakes," Hansen said in the statement. "We found that the tiniest corruption, such as may be caused by a patient moving, can give a very different result if you're using AI and deep learning to reconstruct medical images—meaning that these algorithms lack the stability they need."

Marty Stempniak

Marty Stempniak has covered healthcare since 2012, with his byline appearing in the American Hospital Association's member magazine, Modern Healthcare and McKnight's. Prior to that, he wrote about village government and local business for his hometown newspaper in Oak Park, Illinois. He won a Peter Lisagor and Gold EXCEL awards in 2017 for his coverage of the opioid epidemic. 

Around the web

After reviewing years of data from its clinic, one institution discovered that issues with implant data integrity frequently put patients at risk. 

Prior to the final proposal’s release, the American College of Radiology reached out to CMS to offer its recommendations on payment rates for five out of the six the new codes.

“Before these CPT codes there was no real acknowledgment of the additional burden borne by the providers who accepted these patients."

Trimed Popup
Trimed Popup