Crowdsourced X-rays suitable for training AI in orthopedic injuries

The Internet is an acceptable source of images for training algorithms to automatically triage patients with dislocated joints and similar orthopedic emergencies, according to a study published May 28 in Skeletal Radiology [1].

Biomedical engineering grad student Jinchi Wei, MSE, of Johns Hopkins, radiologist Paul Yi, MD, of the University of Maryland and colleagues made the conclusion after mining online radiology repositories for X-rays of 50 dislocated and 50 normal shoulders, elbows, natural hips and replacement hips.

The team used these crowdsourced image datasets to train several convolutional neural networks (CNNs), then tested the algorithms on an external test set of 100 corresponding radiographs (50 dislocated joints, 50 healthy) from three hospitals.

They found the best performing CNNs achieved high areas under the ROC curve for all four joint types.

Further, after creating heatmaps to see which areas the CNNs flagged for clinical decision making, the researchers found the AI competent at focusing on appropriate features in both dislocated and healthy joints.

The authors conclude:

With modest numbers of images, radiographs from the Internet can be used to train clinically generalizable CNNs for joint dislocations. Given the rarity of joint dislocations at many centers, online repositories may be a viable source for CNN training data.”

More Coverage of Orthopedic Imaging:

Orthopedic surgeons’ most common reasons for opting not to read radiology reports

Orthopedic surgeons share what the specialty seeks in a quality radiology report

‘The debate continues’: Steroid injections to arthritic knees and hips found significantly safer than previously shown

Point-of-care ultrasound cuts costs and visit times for patients with developmental hip dysplasia

More than 99% of X-rays after knee replacement are unnecessary, costing healthcare millions

 

Reference:

  1. Jinchi Wei, David Li, David C. Sing, JaeWon Yang, Indeevar Beeram, Varun Puvanesarajah, Craig J. Della Valle, Paul Tornetta III, Jan Fritz and Paul H. Yi: “Can images crowdsourced from the internet be used to train generalizable joint dislocation deep learning algorithms?” Skeletal Radiology, May 28, 2022. DOI: https://doi.org/10.1007/s00256-022-04077-7
Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The nuclear imaging isotope shortage of molybdenum-99 may be over now that the sidelined reactor is restarting. ASNC's president says PET and new SPECT technologies helped cardiac imaging labs better weather the storm.

CMS has more than doubled the CCTA payment rate from $175 to $357.13. The move, expected to have a significant impact on the utilization of cardiac CT, received immediate praise from imaging specialists.

The all-in-one Omni Legend PET/CT scanner is now being manufactured in a new production facility in Waukesha, Wisconsin.