American College of Radiology (ACR)

The American College of Radiology represents diagnostic radiologists, radiation oncologists, interventional radiologists, nuclear medicine physicians and medical physicists. The society represents more than 41,000 diagnostic and interventional radiologists, radiation oncologists, nuclear medicine physicians and medical physicists. ACR helps members, through advocacy, quality and safety, and innovation, and serves as the voice of radiology, demonstrating value and setting standards to advance the field and practice.

Thumbnail

VIDEO: Where are we with AI adoption in radiology?

Bibb Allen, MD, FACR, chief medical officer of the American College of Radiology (ACR) Data Science Institute, discusses multiple factors involved in the adoption rate of artificial intelligence in radiology.
 

Ischemic stroke shown in CT scans. Image courtesy of RSNA

VIDEO: AI for stroke detection on CT imaging

Bibb Allen, MD, FACR, chief medical officer of the American College of Radiology (ACR) Data Science Institute, explains the trend of using AI for the automated detection of stroke on computed tomography (CT) imaging and the need to include radiologists on the stroke care team.

Thumbnail

Concerns raised over how hospitals can validate radiology AI algorithms

As artificial intelligence (AI) adoption expands in radiology, there is growing concern that AI algorithms need to undergo quality assurance (QA) reviews.

Bibb Allen, MD, FACR, chief medical officer of the American College of Radiology (ACR) Data Science Institute, and former ACR president, explains how hospitals or radiology departments can conduct quality assurance (QA) assessments on artificial intelligence (AI) algorithms they adopt to ensure they are accurate. The ACR established the Assess-AI Registry and AI-Lab to help with validating and tracking AI QA for FDA-cleared algorithms.

VIDEO: Validation monitoring for radiology AI to ensure accuracy

Bibb Allen, MD, FACR, Chief Medical Officer of the American College of Radiology (ACR) Data Science Institute, and former ACR president, explains how hospitals or radiology departments can conduct quality assurance assessments on artificial intelligence algorithms they adopt to ensure they are accurate. 

An overview of artificial intelligence (AI) in radiology with Keith Dreyer with the ACR. Images shows a COVID-19 lung CT scan reconstruction from Siemens Healthineers. #AI #radAI #ACR

VIDEO: Overview of radiology AI by Keith Dreyer

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains the state of AI in radiology in 2022. 

Example of an artificial intelligence (AI) app store on the Sectra website, where Sectra PACS users can select the AI algorithms they want that are already integrated into the Sectra System. Other vendors have followed a similar approach to AI developed by many smaller vendors they partner with.

VIDEO: Development of AI app stores to enable easier access

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains how radiology vendors have developed AI app stores to make it easier to access new FDA cleared AI algorithms.
 

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains artificial intelligence (AI) for radiology. Dreyer also holds the positions of vice chairman of radiology at Massachusetts General Hospital, chief data science and information officer for the departments of radiology for both Massachusetts General Hospital and Brigham and Women's Hospital.

VIDEO: Where will radiology AI be in 5 years?

Keith J. Dreyer, DO, PhD, FACR, American College of Radiology (ACR) Data Science Institute Chief Science Officer, explains 5 developments to watch for in radiology artificial intelligence (AI).

Around the web

The ACR hopes these changes, including the addition of diagnostic performance feedback, will help reduce the number of patients with incidental nodules lost to follow-up each year.

And it can do so with almost 100% accuracy as a first reader, according to a new large-scale analysis.

The patient, who was being cared for in the ICU, was not accompanied or monitored by nursing staff during his exam, despite being sedated.